
1

2

Table of Contents

Executive Summary 4

Project Context 4

Audit scope 5

Security Rating 6

Intended Smart Contract Behaviours 7

Code Quality 9

Audit Resources 9

Dependencies 9

Severity Definitions 10

Audit Findings 11

Centralisation 14

Conclusion 15

Our Methodology 16

Disclaimers 18

About Hashlock 19

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE THAT COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR THE USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Longtail team partnered with Hashlock to conduct a security audit of their Longtail

AMM (Seawater) smart contract. Hashlock manually and proactively reviewed the code

to ensure the project’s team and community that the deployed contracts were secure.

Project Context

Longtail is a DeFi-native Layer-3 blockchain built on the Arbitrum stack, designed to

incentivize user participation by rewarding them for using the platform. It features a

novel on-chain order book called the Super Book, which facilitates faster execution

speeds and shared, permissionless liquidity for all decentralized applications (dApps) on

the chain.

Overall, Longtail aims to create a dynamic and sustainable DeFi ecosystem by

interweaving liquidity and utility into its core operations, providing a seamless and

rewarding experience for both users and developers.

Project Name: Longtail

Compiler Version: N/A

Website: https://long.so

Hashlock Pty Ltd

5

Audit scope

We at Hashlock audited the solidity code within the Longtail project, the scope of work

included a comprehensive review of the smart contracts listed below. We tested the

smart contracts to check for their security and efficiency. These tests were undertaken

primarily through manual line-by-line analysis and were supported by software-assisted

testing.

Description Longtail Protocol Smart Contracts

Platform Arbitrum / Rust

Audit Date July, 2024

Contracts Longtail AMM (Seawater)

GitHub Commit Hash 1989b8055fab34387f96c04ad0451ad35dd14210

Hashlock Pty Ltd

6

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts. We initially identified some
significant vulnerabilities that have since been addressed.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on-chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section.

We initially identified some significant vulnerabilities that have since been addressed.

Hashlock found:

3 Low-severity vulnerabilities

2 QA suggestions

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

7

Intended Smart Contract Behaviours

Claimed Behaviour Actual Behaviour

- ./src/erc20.rs - wrapper for erc20

- ./src/error.rs - errors definitions and some

logical macros definitions

- ./src/eth_serde.rs - utilities for encoding

and decoding ethereum calldata

- ./src/events.rs - import of events

- ./src/immutable.rs - constant values

related to deployment

- ./src/lib.rs - the main entry point

exposing logic of the protocol, contains all

public functions that can be called from

outside

- ./src/main.rs - main function definition

- ./src/migrations.rs - empty contract as of

now

- ./src/permit2_types.rs - definition of

permit struct

- ./src/pool.rs - the contract containing

pool related logic. Allows functions that

are responsible for initialization of a pool,

creation and modification of positions and

collecting fees from the protocol. Defined

StoragePool struct which contains the core

logic of AMM functions.

- ./src/position.rs - contains impl for

StoragePositions, which defines the logic

to manage a single position such as

update, collect fees or create new

Contract achieves this

functionality.

Hashlock Pty Ltd

8

position.

- ./src/tick.rs - Contains structures and

functions to related to a pool's ticks like

update, get_fee_growth_inside, Updates a

tick's fee information when the tick is

crossed or delete a tick from the map

- ./src/types.rs - Re-exports and extension

traits for stylus' bigint types.

- ./src/wasm_erc20.rs - logic for encoding

of ERC20 functions, including on calling

them on other contracts, encode functions

such as: transfer, transfer from, call

optional return but also define non-solidity

native functions give, take, exchange

- ./src/maths/bit_math.rs

- ./src/maths/full_math.rs

- ./src/maths/liquidity_math.rs

- ./src/maths/mod.rs

- ./src/maths/sqrt_price_math.rs

- ./src/maths/swap_math.rs

- ./src/maths/tick_bitmap.rs

- ./src/maths/tick_math.rs

- ./src/maths/unsafe_math.rs

- ./src/maths/utils.rs

All of those functions define mathematical operations

related to protocol core logic, define atomic

mathematical operations used in functions such as sqrt

price calculations, compute single steps of a swap, tick

calculations.

Contract achieves this

functionality.

Hashlock Pty Ltd

9

Code Quality

This audit scope involves the smart contracts for the Longtail project, as outlined in the

Audit Scope section. All contracts, libraries, and interfaces mostly follow standard best

practices to help avoid unnecessary complexity that increases the likelihood of

exploitation, however, some refactoring was required.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the Longtail projects smart contract code in the form of GitHub access.

As mentioned above, code parts are well-commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments help us understand the overall architecture of the protocol.

Dependencies

Per our observation, the libraries used in this smart contracts infrastructure are based

on well-known industry-standard open-source projects.

Hashlock Pty Ltd

10

Severity Definitions

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies

Hashlock Pty Ltd

11

Audit Findings

Low

[L-01] pool.rs - Off by one error in create_position function

Description

The create_position function in pool.rs:81-82 contains a potential off-by-one error in

its tick range validation. The function uses exclusive comparisons (> and <) when

checking if the low and up tick values are within the valid range defined by min_tick

and max_tick.

However the max and min values should still be allowed.

Impact

This can lead at best to excluding some price range, and inconvenience to users, or in

worst case, lead to some unexpected behaviour later on, since those values should still

be included.

Recommendation

Use >= and <= instead.

Status

Resolved

[L-02] pool.rs - Production code should not panic

Description

In pkg/seawater/src/pool.rs in line 298 a debug_assert! is used to check condition

outcome.

It should be noted that when using panic, all gas allocated to the transaction is

consumed when a panic occurs which increases user gas costs.

Hashlock Pty Ltd

12

Impact

Increased gas consumption and worst contract usage experience for users, if an error

happens.

Recommendation

We recommend using assert and proper error handling instead.

Status

Acknowledged

[L-03] lib.rs - exchange function might be error prone

Description

In pkg/seawater/src/wasm_erc20.rs, the exchange function purpose seems to be to

handle both give and take operations from the user depending on users input amount.

This might indeed reduce code complexity.

However it is easily error prone, since it requires the user to use the proper value of a

signed integer to decide if the operation should take from or give to the user. If a user

incorrectly implements the amount, which when dealing with such large numbers is not

that improbable, a financial loss can happen.

Impact

Users may lose funds or be unable to transfer, but due to being a very edge case, the

severity is low.

Recommendation

Consider implementing another switch like give: bool and work with a regular uint

instead, so the user will consciously choose to give or take a token when calling the

function.

Status

Acknowledged

Hashlock Pty Ltd

13

QA

[Q-01] pool.rs - Pools created as enabled may pose additional risk

Description

Init function in pkg/seawater/src/pool.rs:59 is available only for admins which means

this operation is a sensitive one. On the other hand, if there is any error in pool

initialization, like incorrect, unfavourable pricing, there will be no time to correct it as

the pool will go public. Assume the pool is created with incorrect price, and first user

noticing that can take advantage of that fact to arbitrage against the pool.

Impact

Increased risk of exploitation of admin mistakes. However, the likelihood of this

happening is low (required mistake of a trusted role).

Recommendation

Consider creating a pool as disabled by default, and the admin should enable it only

when it's considered properly initialised as an extra safeguard.

Status

Resolved

[Q-02] wasm_erc20.rs - Unreachable code part

Description

In pkg/seawater/src/wasm_erc20.rs in the exchange function there is a tripe if clause,

depending if the provided number is negative or positive and a third clause for another

case which presumably is to handle zero. However as per the Rust documentation

below:

(https://docs.rs/num/latest/num/trait.Signed.html#tymethod.is_negative) zero is

counted as negative, therefore the third clause is redundant.

Hashlock Pty Ltd

https://docs.rs/num/latest/num/trait.Signed.html#tymethod.is_negative

14

Impact

Missing best practice, unnecessary code gives worst development experience.

Recommendation

Consider removing the third clause for clarity of the code.

Status

Resolved

Hashlock Pty Ltd

15

Centralisation

The Longtail project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

16

Conclusion

After Hashlocks analysis, the Longtail project seems to have a sound and well-tested

code base, now that our vulnerability findings have been resolved and acknowledged.

Overall, most of the code is correctly ordered and follows industry best practices. The

code is well commented on as well. To the best of our ability, Hashlock is not able to

identify any further vulnerabilities.

Hashlock Pty Ltd

17

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security audit

process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behavior when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

18

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we still need to verify the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown not to represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

19

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

Hashlock Pty Ltd

20

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

21

Hashlock Pty Ltd

